首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44071篇
  免费   3864篇
  国内免费   2191篇
电工技术   1334篇
综合类   3024篇
化学工业   6469篇
金属工艺   5139篇
机械仪表   2177篇
建筑科学   2097篇
矿业工程   788篇
能源动力   1402篇
轻工业   2609篇
水利工程   216篇
石油天然气   991篇
武器工业   301篇
无线电   4331篇
一般工业技术   6670篇
冶金工业   2793篇
原子能技术   1526篇
自动化技术   8259篇
  2024年   66篇
  2023年   700篇
  2022年   1177篇
  2021年   1235篇
  2020年   1264篇
  2019年   1335篇
  2018年   1126篇
  2017年   1365篇
  2016年   1373篇
  2015年   1272篇
  2014年   1869篇
  2013年   2065篇
  2012年   2395篇
  2011年   2652篇
  2010年   1763篇
  2009年   2245篇
  2008年   1959篇
  2007年   2233篇
  2006年   2045篇
  2005年   1686篇
  2004年   2286篇
  2003年   1827篇
  2002年   2262篇
  2001年   1860篇
  2000年   1614篇
  1999年   1379篇
  1998年   881篇
  1997年   899篇
  1996年   1785篇
  1995年   1015篇
  1994年   750篇
  1993年   288篇
  1992年   237篇
  1991年   239篇
  1990年   192篇
  1989年   123篇
  1988年   93篇
  1987年   59篇
  1986年   78篇
  1985年   86篇
  1984年   58篇
  1983年   41篇
  1982年   69篇
  1981年   56篇
  1980年   14篇
  1979年   21篇
  1978年   14篇
  1977年   10篇
  1976年   8篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
11.
The plasma spray technique was well proven in producing metal oxide based gas sensors in the last two decades using different powder feedstocks. However, limited research was made to fabricate hydrogen gas sensor from tin oxide layer coated over tungsten oxide layer. This paper attempts to interpret the hydrogen gas sensing performances of plasma sprayed coating derived by depositing tin oxide layer over tungsten oxide (SnO2/WO3) layer. Plasma sprayed SnO2/WO3 sensor showed maximum response of 90% at 150 °C in contrast to stand-alone WO3 (89% at 350 °C) and stand-alone SnO2 (89% at 250 °C). The lower operating temperature of SnO2/WO3 sensor without compromising gas response was attributed to the WO3–SnO2 hetero-junction. SnO2/WO3 sensor showed selective sensing towards hydrogen with respect to carbon monoxide and methane gases. This sensor also possessed repeatable characteristics after 39 days from the initial measurement. In a nut-shell, plasma spayed SnO2/WO3 sensor showed stability of base resistance, repeatability after successive response and recovery cycles, selective sensing towards 500 ppm H2 with significant magnitude of gas response of 90%, response time of 35 s and recovery time of 269 s at a temperature of 150 °C.  相似文献   
12.
Food safety is the primary goal for food and drink manufacturers. Cleaning and disinfection practices applied to the processing environment are vital to maintain this safety; yet, current approaches can incur costly downtime and the potential for microorganisms to grow and establish, if not effectively removed. For that reason, manufacturers are seeking nonthermal, online, and continuous disinfection processes to control the microbial levels within the processing environment. One such emerging technique, with great potential, is cold atmospheric pressure plasma (CAP). This review presents the latest advances and challenges associated with CAP-based technologies for the decontamination of surfaces and equipment found within the food-processing environment. It provides a detailed overview of the technology and a comprehensive analysis of the many CAP-based antimicrobial studies on food-contact surfaces and materials. As CAP is considered an emerging technique, many of the recent studies are still in the preliminary stages, with results obtained under widely different conditions. This lack of cohesive information and an inability to directly compare CAP systems has greatly impeded technological development. The review further explores the challenge of scaling CAP technology to meet industry needs, considering aspects such as regulatory constraints, environmental credentials, and cost of use. Finally, a discussion is presented on the future outlook for CAP technology in this area, identifying key challenges that must be addressed to promote industry uptake.  相似文献   
13.
《Ceramics International》2022,48(9):12800-12805
Perovskite solid solution materials, namely, 0.67BiFeO3-0.33BaTiO3, were synthesized by spark plasma sintering method. The effects of the spark plasma sintering temperature on phase purity, microstructure, and electric properties of the as-prepared materials were investigated. The materials could be referred as pseudocubic phases based on the X-ray diffraction patterns. The bulk density first increased and then decreased. The 880 °C-sintered-ceramics had the maximal density and a compact microstructure with grain size of 0.77 ± 0.34 μm. The dielectric constant as a function of temperature exhibited a broad peak. At the optimal spark-plasma-sintering temperature, enhanced ferroelectric properties were observed with a value of Pr ~ 21 μC/cm2. This investigation on the spark plasma sintering process confirms it as an efficient approach to prepare outstanding performance BiFeO3–BaTiO3 ceramics.  相似文献   
14.
《Ceramics International》2022,48(16):23510-23517
In the present work, microstructural refinement and mechanical response of Al2O3–ZrO2 eutectics fabricated by a pulse discharge plasma assisted melting (PDPAM) method were investigated. The solidified microstructure evolves from polygonal eutectic colonies into irregular cellular colonies with increasing the superheating temperature of the melt from 1820 °C to 1900 °C. The average eutectic spacing inside the colonies decreases from 1.80 ± 0.10 μm to 0.25 ± 0.06 μm, and the coarse inter-colonial structure is refined, which is attributed to the increase in undercooling temperature. High-temperature microstructural stability of Al2O3–ZrO2 eutectics is improved significantly as contrasted with the as-sintered ceramics. Besides, the load dependence of Vickers hardness for Al2O3–ZrO2 eutectics is investigated.  相似文献   
15.
To study the computational aspects of collecting available data in a systematically organized database is becoming a matter of urgency in Nutrition & Food Science. Indeed, major projects on developing big datasets have attempted to fill this gap, but so far with limitations on important facets of food composition such as its temporal variation and uncertainty quantification. The need for methodological data processing, from data acquisition, digital storage, statistics and visualization, via pattern recognition and modelling to prediction and optimization is key to make objective and knowledge-based decisions on scientific and technological issues for food industry, academy and regulation. This study aims to demonstrate the use of a recently developed database on the composition of human milk, the first and easily the most complex food in one's life. We show that the purpose-built ontology of the database, with novelties like considering the food composition as a temporal and stochastic response, can help to recognize patterns in the variation of its protein content.Industrial relevance textThis study highlights the need (i) for introducing ISO-like standards how to digitize food composition data; (ii) for computational methods to explore and utilize such databases to their full potentials.  相似文献   
16.
《Ceramics International》2022,48(17):24540-24549
In this study, we investigated the physical and chemical properties of H2 plasma-treated tin oxide (SnOX) thin films, followed by their applications in ambipolar thin-film transistors (TFTs). Finely controlled H2 implantation was carried out using a reactive-ion-etching system at a radio frequency power of 30 W and under various exposure times. H2 plasma treatments induced changes in the chemical structures and surface morphologies of the SnOX thin films, including a partial phase transformation of Sn and SnO to SnO2. The defects originating from oxygen vacancies (OVacs) in the SnOX thin films were passivated by H via the formation of Sn–H bonds, which decreased the density of subgap states in the SnOX thin films. The H2 plasma-treated SnOX TFTs showed considerably improved ambipolarity and electrical performance. Complementary metal–oxide–semiconductor (CMOS) logic inverters comprising H2-plasma-treated ambipolar SnOX TFTs exhibited a maximum gain of 34.5 V/V at a supply voltage of 10 V. The results of this study present the meaningful investigation of H2 plasma-treated ambipolar SnOX TFTs that can be used to fabricate CMOS circuits for various applications.  相似文献   
17.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   
18.
The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.  相似文献   
19.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
20.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号